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r\bstract-A composite material. made up of line:trly elastil: inclusions and matrix. is considered.
The two components arc held together by viSl:QUS coupling. We show that the effective properties
of this medium can be obtained using homogenization tel:hniques. The resulting homogenized
material is anisotropic in elasticities as well as in dissip:ttion. For the special caSt: of a laminated
I:{'mposite. we c,m state the clfl'Ctive constitutive law cltplil:itly. The anisotrt1pies in the dIssipation
arc studied in det:til.

I. INTRODUCTION

We model the propagati{lO of w.tves in a two-dimensional medium whidl contains mkro­
structural indusions. The hitter are coupled to the matrix material by viscous contact. This
simple-minded model is a lirst attempt at mathem'ltkally modeling propagation phenomena
in a medium where there is inherent .misotropy in the dissipation. Possible applications
include the description of W.lve propag'ltion in damaged composites whcre subst'lntial
debonding of the libers h.IS occurred. and in geological formations consisting of rocks or
p!utes which slide .lg.linst one another.

The components of the medium in ljuestion will he materials satisfying linear isotropic
elasticity. In addition. the microstructure will be .lssumed to be periodk. The underlying
assumptions will be that the dominant wavelength of the disturb'lOce is an order of mag­
nitude !urger than the lengthscale of the microstructure. We shall use homogenization
techniljues to show th.lt it is possible to replace the complic.ltcd medium by an elfective
medium. The steps leading to homogenization will be presented.

A special case. that of a medium made up of fine layers. will be studied in detail. This
further simplification allows us to write down the equations of the effective medium
explicitly. and to give a description of its properties.

2. MODEL OF THE MEDIUM

We assume that our composite is made up of u mixture of two lineurly elastic. isotropic
components. To represent the inhomogeneity due to the microstructure. which is of length
scale l: (small). it is convenient to define the Lame moduli and density as functions of
position x = (x I. -'(2)' To incorpomte the smull ness of the microstructure. we denote the
Lame parameters and the density by

fl«X) :::: jt(X!I:).

;:(x) = ;.(x/r.).

p'(x) = ,,(x/r.) .
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Furthcrmore. the medium is periodic. with period p:

,u(y+p) = ply).

i.()·+p) = i.(y).

p(y+p) = ply).

for any vector y. Here the fixed vector p = (PI' Pc) represents the periodic cell.
We shall work with particle displacements. Thus let u" be the particle displacement

vector (components 1I~. i = I. 2). We shall use (1" to represent the stress tensor (components
G'~,). The superscript c: is used to indicate the dependence of the displacement and stress on
the size of the microstructural cell. Hooke's law for isotropic elasticity states that

( I)

We have used the standard notation: (', = iJ"
We shall now go into a cell and describe the microstructure. For convenience, let this

cell occupy [O.r.p.] x [O.r.p:l. We shall usc a scaled variable y = X/I:. We separate each cell
into two regions. whose boundary is a closed curve r. The domain enclosed by r is denoted
by n. The situation is depicted in Fig. I. In each cdl we assign the Lame parameters to
take on values:

Likewise. we have for the density

{
II

A

II(y) = 1\
II

{

A. I
\

A(y) = '1\
I.

{

pA
p( y) = (j

p

ifyeQ

ify¢Q.

if yeQ

ify¢Q.

ifyeQ

ify¢Q.

To complete the description of the microstructure. we shall precribe boundary con­
ditions on r. To model the possibility of sliding along the boundary r which separates the
two mixtun: components, we shall assume that the displacement normal to the boundary
is continuous. while the velocity tangent to the boundary is allowed to sutTer a jump whose

Fig. I. This figure illustrates the geometry of a cell. The medium in question is made up periodically
of identical cells.
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magnitude depends linearly on the stress at that point. For the cell in question. these
requirements are reflected in the equations

(2)

(3)

Here. Nand T are the outward normal and tangent to the curve r. The notation r­
implies that we approach the boundary from inside n. and r + from outside n. The
parameter c is the viscous constant.

The factor IIf: on the left-hand-side above is necessary because we are interested in the
behavior of the solution u' as f: -- O. If we do not have this factor. the homogenized medium
does not support propagation. This can be demonstrated using the asymptotic method
employed in the next section.

The final equations needed to completely specify the problem are the balance of
momentum equations, written here as

(4)

It is understood that the prescription of the cell problem is repeatcd until the cntire
domain of interest is covercd. The problem we have in mind for this systcm will bc some
kind of initial· boundary valuc problem. Clcarly thc problem we havc at hand is a very
dillicult one. It is not obvious for example how one should solvc it numerically. Howcvcr.
in this work. we shall usc a techniquc that allows us to invcstigate the behavior of the
solution as I: -- O.

3. HOMOGENIZATION

To analyze the problem at hand, we shall use a technique which is known as homo­
geni=ation methods or effective medium theory. For excellent general references on this
approach. see Bensoussan et al. (1978), and Sanchez-Palencia (1980); see also Sanchez­
Palencia and Zaoui (1986) for a survey of examples of using homogenization to solve some
engineering problems.

Homogenization attempts to find the effective behavior of the composite medium by
looking at the limit when the size of the microstructure egoes to O. For hyperbolic problems
that arc in consideration here, this means that the dominant wavelength of the distrubance
in the medium must be an order of magnitude larger than the length scale of the micro­
structure. This is a more 'standard' interpretation of homogenization. and is called the
static limit by Bensoussan et £II. (1978). For transient problems involving a wide spectrum
in the disturbances. other techniques must be developed.

However, homogenization docs give us a relatively simple way ofstudying this problem.
In addition. the n:sulting effective medium equations arc amenable to computation. It is an
approximation whose accuracy has bec:n assessed for the case of a porous medium, both in
numerical simulations and in laboratory experiments-sec Auriault et £II. (1985). The issue
of numerical analysis and accuracy of homogenization of elliptic partial differen­
tial equutions has also been studied; sec for example Bubuska (1976) and Vogclius and
Papanicolaou (1982).

It should be pointed out that homogenization is not the only technique available to
obtain the effective properties of a composite. Achenbach and Sun (1971) presented a
method based on averaging of physical quantities and requiring specific physical principles
to be sutisfied. While this procedure is intuitively appealing. homogenization has the advan­
tage that it is a mathematical technique based on asymptotics. This fact allows one to
proceed formally. and to apply it over a wide variety of physical problems (linear or
nonlinear) described by partial differential equations.
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Others have considered this problem of hyperbolic partial differential equations with
period coefficients from another point of view. The fact that the coefficients are periodic
allows one to usc a version of Floquet Theory. The solution of the problem can usually be
represented in terms of eigenfunctions (called Bloch waves). The theory. although very
cumbersome computationally. is exact. For instance. it is possible to find the dispersion
relation of the medium. Interested readers arc referred to Achenbach and Kitahara (1987).
Delph et al. (1979) and Odeh and Keller ( 1964). It seems possible to extend this theory to
our problem. where in addition to the periodic coefficients. we also have internal boundary
conditions.

It is also possible to break away from the assumption of medium periodicity by
considering a random medium with microstructures. Burridge et al. (1987) studied long­
time statistics of the response of a one-dimensional random medium. The problem of heat
conduction in a medium with random conductivities was considered by Papanicolaou and
Varadhan (1982), using a technique which is in the same spirit as homogenization. It was
not clear however how the formulae could be exploited, as they appear to be very special
and diflicult to compute with.

The idea behind homogenization is to first assume that the solution depends on two
spatial variables x and y = X/I:. The second variable. referred to as the 'fast variablc'. takcs
into account the two scales present in the problem. Let us suppress the dependence of the
soluti~)n on t for the moment. The physical displacements and stresses arc understood as

u'(X) = u(x. )')Iy~""

(J'(x) = (J(x.y)l y _".

where both u and (J are functions of the two independcnt spatial variahles x and y.

Next. we write a power series expansion in /::

u(x.y) = u"(X.Y)+I:lII(X.Y)+I:~U~(X.Y)+ .... (5)

(6)

It is further assumed that Uk and (Jk an.: periodic with period p in the variable y to take into
account the periodicity of the microstructure.

Partial ditren.:ntiation with respect to x, of Il and (Jk yields

(7)

where D, = 2.."
The next step is simply to substitute the expansions in (5) and (6) into eqns (I) and

(4), and 1ll,ltch equal powers in I:. From eqns (I) we get

(8)

from the I: I terms. From e" terms, we get

(9)

Similarly. from equation (4), we obtain

( 10)

( II )
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From eqns (8). we can conclude that gO depends only on x and t. because both;' and
Jl are both positive.

To make the following calculations more manageable. we will need to work with the
strain tensor

and the 'microstructural stress tensor'

Keep in mind that the Lame moduli are functions of y only.
Ne~t. we combine eqns (10) and (9) to obtain

( 12)

To completely determine uI. we go to the boundary conditions (2) and (3). Using the
e~pansion and matching equal powers of 6. we get

( 13)

(14)

The last three equations. along with the periodicity requirement in the variahle y. determine
u'.

To display the character of the clTective medium. we need to ohtain .1 representation
for u I. To this end. we put eqn (9) in the right-hand-side of (14) and rearrange to get

Notice that in the right-hano-side. I:~II depends only on x ano t.
Now we are reaoy to define what are called the 'local prohlems' by Sanchez-Palencia

(1980). Let the au~iliary functions X4l
( y) and "kl(y. t) be p-peridoc vector functions in y and

satisfy

with X41 continuous across r. and

Dht(D,t1~I+Dl,:I)+)'(D",t1~~)c5,j)= o.
(t1:llr+ -,,:llr_)N, = o.

ccJ,(t1~llr + - t1~11 r _) T, - (Jl(D;t1~1+DJt1:I) +)'(D",t1~)()ij) = (2Itc5'k() JI + )'(}'I(}kl) T,NJI r ± H( t).

( 17)

H(t) is the Heaviside function. The initial condition for "kI should be one that agrees with
the displacement vector. For instance, if u' = 0 for t < O. then we must have "kl = 0 for
t < 0 also.

Then. from eqns (12). (14) and (IS), we arrive at the representation

( 18)

We can now write down the equations governing U
O and tJ'0. We shall use

- If,(.) =- dy(')
p "
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to denote the averaging operation over a periodic cell P. From eqns (9) and (18). we have

-0 ( ) _ [('" -.. • >: -) (D kI D k1) • (D k1)"] 0 (U" X. t - _J,lI),kr)j,+I.u,/),., +j.l ,x, + jX, +). mXm J,/ e", x. t)

r"(D kl D /(/) '(D /(/)15] 0(.)+ If< ,1'/, + /1, + It m'7m ". e", x. t .

The equilibrium equation is obtained from (II) :

(19)

(20)

because D,u,', = 0 by periodicity.
Eq uations (19) and (20) specify the effective medium. It is thought of formally as the

solution of the original problem for e .... O. The specification of the microstructure. that is.
c. p. i.. J,L and r. determines the auxiliary functions ·t' and "k'. Once they are obtained. they
are inserted into eqns (19). which gives the effective coefficients of the lossy elastic medium.

The expression (19) has a very natural interpretation. The first term on the right is the
elastic anisotropy contribution. due to the microstructural inhomogeneity of the medium.
The second term is the contribution from the viscous losses caused by the presence of
microstructural boundaries. Notice that the latter is a convolution of a kernel with the
strain tensor (not a product!). It is possible to show that the elTective Hooke's tensor
satisfies the usual symmetries: sec for example Sancbez-p.l1encia (1980). It is not very hard
(only tedious) to show that the dissipation tensor "k' is symmetric in k and I.

The second term is responsible for energy loss -~ this may be possible to assert from
the nature of the kernel "k' and energy estimates. However. at this point. we feel it will be
more instructive to solve an explicit example th'lt of one-dimensional lamination. where
energy decay docs indeed take pl'lce.

4. ONE·DIMENSIONAL LAMINATION AND EFFECTIVE MEDIUM PROPERTIES

We specialize now to the case where the microstructure is a lamination. For
convenience, we choose XI to be the layering direction. The periodic cell, here a slab. is of
size e. We need only a scalar 'fast' variable YI = xl/e. Let us concentrate our attention on
the cell lying on the interval [ - el2, e/2]. In the Y I coordinate. the interval [a, h] is the domain
n. r consists of two points Y I = a and Y I = h. See Fig. 2.

The mixture in this cell is described by

{

pt\

P(YI) = pll

B

-t a

A

ifYIE[a.h]

if YI ~ [a. h).

ify, E[a.h)

if)'1 ~ [a.h].

ifYIE[a.h]

ifYI ~[a.b].

B

b t Yl

Fig. 2. The periodic cell for one-dimensional lamination is the interval 1- j. D. The interfaces are
at.l', = CI. h. The slab occupying [C/. hI is mi~turc A. the remainder is mi~turc B.
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The internal boundary conditions (2) and (3) reduce to

387

(21 )

(22)

with continuity requirements on ttl across Y I = a, b.
Due to the one-dimensional lamination, the expansions (5) and (6) now take the form

U«x) = UO(X'YI)+t:U I(X'YI)+t:2U2(X,YI)+···'

a«x) = aO(x'YI)+t:a l (x.YI)+t:2a 2(x'YI)+···.

Partial differentiation of Uk and ~ with respect to :c I need special attention:

We proceed by considering eqns (8), which for this special case is given by

()'+2JI)DIII~ = 0,

JI(DIII~) +)'(DIII~) = o.

forom these rehltions, we conclude that Ull depend only on x and t.
We also know from cqns (9) that

(23)

(24)

(25)

recalling that el~ is the strain due to uf.
Equation (10) reduces to

D,a~1 = 0,

D10'g, = O.

from which we conclude that both u? I and u? 2 depend only on x and t. This fact will be
useful in the calculation leading to the effective medium. Notice, however. that we cannot
say anything about a~2' The boundary conditions (20) and (21) imply that

(26)

(27)

We shall go through the calculation of the auxiliary functions only for Ill. The deter­
mination of II~ is much simpler, and does not require the construction ofauxiliary functions.
From D,a~1 = 0, we have
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We have used primes to denote differentiation with respect to YI' The auxiliary functions
XII and Xcc are required to solve

D\().+2Il )D 1X'\ = -().+21l)'.

D\ (). + 21l)D \Xcc = -).'.

and be I-periodic (generalized) functions ofY I' The representation for u: is

The auxiliary functions XII and Xc~ are relatively easy to solve (see Bensoussan et al..
1978. section 2.3). We use the notation

f'~
(.) = .. , ~ dy,(·).

I
a, '=;--'.'.i.+ ..JI

).
a,·= .. ), + 2JI

The representation for Dill: is

(2X)

This result will be inserted into ellns (23) and (25).
To find u~, we t'lke ti, of elln (24) after dividing through by It. Next, keeping in mind

th'lta'i Cdepends only on x and t, we integrate the expression over the intervals ( - 1/2, a - ).
(a+,h-), (h+,1/2) inYI to get

We add the threc cxprcssions, making lISC of cllns (26) and (27), and the periodicity of u1
to arrive at

(29)

This is the stress-strain relation governing shear deformation.
Now, we are ready to write down the stress-strain relation for the effective medium.

We use eqn (28) in (23) and (25) to get the relation for normal stresses. Hooke's law for
the homogenized medium will be written in matrix form:
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The matrix elements are

o
(30)

e" = I/G).
y=-~/CJ

i"or the momentum h:tlanee. we h:tve cqn (20). which we rewrite here for convenience
as

(31 )

Equations (30) ami (31) describe the el1cctive medium.
We can now study the property of the stress-strain law. If c -- co. i.e. perfect bonding

of the layers. then the second term on the right-hand-side vanishes. In this case. we get a
transversdy isotropic medium with fIve elastic constants.

If the mixture is homogeneous. then CII = C12 = ().+2Jl). C\2 = C!I = Cll = It. which
corresponds to the elasticities of an isotropic medium. We do get an additional term due
to damping. The el1"ect of the damping term will be studied next.

For the homogeneous mixture, we can analyze the solution of the governing partial
differential equations using modal analysis. This method will actually work for any aniso­
tropic elastic material. with or without damping. using a modification of the technique used
by Synge (1957). However. since the point of this work is to study anisotropic damping.
we sh:tll exploit the simplicity alTorded by the clastic isotropy.

Let us write down the equations s:ttislied by the displacement vector u(x. t) and the
shear stress (11 2(X. t). We drop the superscript 0 from now on. From eqns (30) and (31). we
have

I}(J,2111 = (A,+2/1)Dilll +),0\02 11 2+<1:0'1:.

pel,:u: = ;.010:"\ + ().+2Jl)MII: +0 10'1:,

2Jl
C,(1\: = JU7,(O.1I2+0:UI)- -(11:'

e

We are interested in a solution of the form
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(32)

a plane wave with a fixed wave number k = (k I. k~). at frequency w which depends on k.
Substituting eqn (32) into the equations governing u and (1, we get

(33)

where we have used the normalized frequency

and defined the P-to-S wavespeeds ratio (squared)

r~ = (). +21t )

11

the dissipation constant

c

and a new variahh.:

ie,)
(X = -~ .....

iui+c"

The goal now is to find wand v which satisfy eqn (33). For each k. these are called the
frequency and the displacement mode respectively. The function was a function of k is the
dispersion curve for that mode. If the dispersion curve has a positive imaginary component.
then that mode decays exponentially in time. The imaginary component of wis referred to
as attenuation.

For a mode to be non-trivial wmust be such that the determinant in eqn (33) is zero.
After writing k = (k cos O. k sin 0), the required condition on the determinant becomes a
fifth order polynomial equation:

This equation can be solved exactly for 0 = O. i.e. propagation in the XI direction. For this
angle. we have

w=0

w = ±rk

v = (0. 1)

v=(1.0)

w= ±Jk2-c'2/4+ic'/2 v = (0.1).

The first solution corresponds to the static (non-propagating) solution. and we choose to
ignore it. The second solution corresponds to P-waves propagating in the XI direction.
Notice that this mode is not attenuated. The last solution corresponds to S-waves. and this
mode decays exponentially as a function of time according to a factor of c' /2.

The dispersion curves exhibit symmetry about multiples of tr/4 in O. as exhibited by
the last term in eqn (34). For angles other than O. we resorted to the computer to solve for
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P-wave Attenuation

9=9/4

391

9=9/6
o 12

~

= 0.09
c
2
~

~

::l 0.06
;:
:(

0.03

0.00
0 2 3

wave number k
4

9=0

5

Fig. 3. This figure illustrates the attenuation for waves propagating nearly at the P-wave speed. The
constants are , = 2. (.' = I. Notice that there is no attenuation at 0 = O. Observe also that the

attenuation is generally less severe than for S-wave modes.

the roots of eqn (34). For our calculations. we took r = 2 and c' = I. We considered wave
numbers 0 ~ k ~ 5 because the interesting phenomena in the dispersion occur at low wave
numbers.

The results show that there is always a st.ttic mode. However. this mode d~'Cays

exponentially for 0 not equal to multiples of TC/2. This simply means that if the initial data
for an initial value problem begin with a static equilibrium solution. this solution will
decay exponentially in time. depending on its Fourier components. However.since we are
concerned mostly with propagation problems. this is not an issue.

In addition to static modes. we have two propagating modes. One mode travels nearly
at the P·wave speed. and the other at the S-wave speed. Both modes arc slightly dispersive
near zero wave numbers. The more interesting aspect is their attenuation.

For modes travelling .tt nearly P-wave speed. we find that the attenuation is zero for
o= O. as our earlier calculation shows. When 0 increases. the attenuation increases and
peaks at 0 = TC/4. The behavior is symmetric about 0 = TC/4. For a fixed angle ofpropagation.
the attenuation is small at low wave numbers. then increases until it flattens to a constant
value. This is illustrated in Fig. 3.

For modes travelling at nearly S-wave speed (Fig. 4). we find that the attenuation is
largest at 0 =O. At this angle. there is a threshold wave number below which no propagating

S-wave Attenuation

4

0.6

0.5

~
0.4.§

c
:3 0.3
<tI
::l
C
~ 0.2
:;:

0.\

0.0
0 2 3

wave number k

9=0

O=1T/12

5

Fig. 4. The attenuation curves for waves propagating nearly at the S-wave speed. The constants are
the same as those in Fig. 3. Notice that there is no attenuation at 0 = 71/4.
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solution exist. This is displayed in the formula for exact dispersion above. As 0 increases.
the attenuation decreases until t} = 1t4. where no ultenLwlion occurs. The explanation is
that shear waves polarized at 1t.4 generate only normal tractions along the interfaces. and
since only shear traction produces dissipation. no attenuation occurs.

5. DISCUSSION

We have constructed a model of a medium which is anisotropic in both elasticities and
frictional losses. The model material is made up of periodic cells. where each cell is made
by mixing two isotropic elastic components. The losses are caused by viscous sliding at the
microstructural interfaces.

The technique of homogenization was used to replace the rather complicated structure
with an effective medium. It was shown that a new time-dependent stress-strain law is
satisfied by the homogenized medium. For the particularly simple case of one-dimensional
lamination. we calculated the explicit form of the effective medium equations and studied
the properties of the solution.

It should be remarked that we can easily extend the results presented here to the case
where the mixture is allowed to vary smoothly from cell to cell. In place of 1t'(x) = II(x/t;)
we would have 1{(X) = II(x. x/t;). and similarly for;. and p. The viscous constant may also
be made to depend on x. This added complexity only means that the homogenized e1"lsticities
and dissip..ttion tensor in eqn ( 19) will depend on x.

Sensitivity analysis would be a natural test to subject our material to. The analysis will
reveal. olle hopes. the number and the types of experiments needed to determine all the
constants in eqn (11)).

As a possible application for the m'lterial modeled here. we could consider the problem
of linding regions where the dissipation coellident in equation (II)) is substantial from
measured responses of the medium to known excitation. This could be a simple-minded
caricature of finding zones of llebonding (delamirwtion) in a composite medium. as we
expect some sliding to oecur there.

A,.k"o...",tI"'·1II'·fII.,~- We wlluld like to th;lnk Mi~had Vogdius ("r very stimulating ;11Il! hdpful ~onvers;ltionson
homogenization. This work was completed while the Iirsl author was a visitor in the Department of Mathematics
at lhe University of l\tlryhlnd. academi~ye;lr 19117. lie e.\presscs his gratitude for lhe hospitality of the department
during his stay. Professor Achenbach was kind elll1ugh to preview the work and made hdpfulwmments. some
of which have been incorporated in the paper. We arc very gratel'ul for his hdp.

REFERENCES

Achenha..:h. J. and Sun. C. T. (Inl). The dire..:tionally r~infor..:ed composite as a hOlllogen..:ous wntinuum with
microstructure. In Dy""",i..., of CO"'p""ile Maleri"I.I'. ASME. New York.

A..:henba..:h. J. and Kitahilra. M. (1987). Harmonic wavcs in a solid with a period distribution of spheri":;ll..:avities.
J. A<'IIIISI. So,'. Am. HI. 595--5lJM.

Allriault. J. L.. Borne. L. and Chambon. R. (19115). DYllami~s of porous saturated medi;l • ..:he..:king the generalized
law of Darcy. J. A<'lIIw. So... A",. 77. IlMl ~1650.

Babuska. I. (1976). Solution of inlerfa~c problems by homogeniz;llion. parts I and II. SIAM J . .IIallr. A"i1I. 7.
60JlM5.

Bensoussan. t\ .• Lions. J. L. and Papani..:olaou. G. (197X). Asymploli...·/"i1lysi.' .lllT Periodi.. Slmetrtft'''. North­
lIolland. Amsterdam.

Burridge. R.. Papani..:olaou. G. and While. B. (llJIl7). Statistics for pulse relk..:tiol1 from a randomly layered
medium. SIAM J. Appl. Mmlr. 47. 146 1611.

Delph, Too Herrmann. G. and Kaul. R. (1979). lIarllloni..: W;lve prop;lgatiol1 in a periodically layered inlinite
dasli..: body; plane strain. an;t!ytical results. AS.\Il' J ..·11'1'1. Me,k 46. I IJ II'J.

Odeh. F. and Keller. 1. (1964). Partial difTerenlial equations wilh periodic wdlkients and Bloch W;IVCS in ~rystals.

J. Mallr. Plrys. 5. 1499-/504.
Pap;lnicolaou. G. and Varadhan. S. (1911~). Boundary v;t!ue problems with r;apidly oscill;lting random cocllkients.

Colloqrti" .\/all"·"'''lit·" Sociel'lIi.r Jm",.' Bol.mi 27. "Ramlom FidtL,·. ESltergom (Hungary). pp. IU5 1173.
North-llolI.lnd. t\mslerdam.

San..:hez-Palencia. E. (19110). NOII-I/'",W.q,·1/(·tJIL' M.·di" "fltl Vihrulion TII,'ory. Le~lure Notes in Physi..:s No. 127.
Springer-Verlag. Berlin.

Sanche7.-P;llent.:ia. E. and Zaouie. A.. cds (19X6). l/o"'oY""i:alio" T,'c/",iqu<'s for Co"'posil" Af<odia. L~"Cture Notes
in Physics No. 272. Springer-Verlag. Berlin.

Synge. J. L. (1957). Elastic waves in anisolropic media. J. Malll. Plry.,. 35. J2J 335.

Vogelius. M. and Papanicolaou. G. (1911~). A projection method applied 10 dilTlIsion in a periodic structure.
SIA M J. Appl. Malll. 42. 1301-1322.


